

Mitsubishi Chemical Advanced Materials

Machinist Handbook

Machining Plastics Made Easy

800-877-2576 ALROPLASTICS.COM

Broad Inventory Offering: • Engineering Plastic Rods from 1/8" to 18" diameter • Engineering Plastic Sheets from 1/8" to 8" thick

Your Source for Engineering Plastics: • Over \$30 million in stock at Alro Plastics • Same day cutting and shipping for quick delivery • In-House CAD Department

Table of Contents

- 04 Fabrication Guidelines
- 10 Machinability
- 12 Drilling Guidelines
- 14 Troubleshooting Drilling
- 16 Sawing Guidelines
- 18 End Milling/ Slotting Guidelines
- 20 Face Milling
- 22 Troubleshooting Turning & Boring
- 23 Troubleshooting Cutting Off
- 24 Turning Guidelines
- 26 Annealing
- 28 Air Annealing Guidelines
- 32 Diagrams
- 34 Conversions
- 36 Notes

ease Return	to:
Name:	
Company:	
Department:	
Address:	
City:	
State:	
Zip:	
Phone:	
Email:	

Ρ

FABRICATION GUIDELINES

The following guidelines are presented for those machinists not familiar with the machining characteristics of plastics. They are intended as guidelines only and may not represent the most optimum conditions for all parts. The troubleshooting quick reference guides in this booklet should be used to correct undesirable surface finishes or material responses during machining operations.

All Mitsubishi Chemical Advanced Materials are stress relieved to ensure highest degree of machinability and dimensional stability. However, the relative softness of plastics (compared to metals) generally results in greater difficulty maintaining tight tolerances during and after machining. A good rule of thumb for tolerances of plastic parts is +/-.001" per inch of dimension although tighter tolerances are possible with very stable, reinforced materials.

When Machining Mitsubishi Chemical Advanced Materials Stock Shapes Remember...

- Thermal expansion is up to 10x greater with plastics than metals
- Plastics lose heat more slowly than metals, so avoid localized overheating
- Softening (and melting) temperatures of plastics are much lower than metals
- Plastics are much more elastic than metals

Because of these differences, you may wish to experiment with fixtures, tool materials, angles, speeds and feed rates to obtain optimum results.

Getting Started

- Positive tool geometries with ground peripheries are recommended
- Carbide tooling with ground top surfaces is suggested for optimum tool life and surfaces finish. Polycrystalline diamond tooling provides optimum surface finish when machining Duratron[®] PBI.
- Use adequate chip clearance to prevent clogging
- Adequately support the material to restrict deflection away from the cutting tool

Coolants

Coolants are generally not required for most machining operations (not including drilling and parting off). However, for optimum surface finishes and close tolerances, non-aromatic, water soluble coolants are suggested. Spray mists and pressurized air are very effective means of cooling the cutting interface. General purpose petroleum based cutting fluids, although suitable for many metals and plastics, may contribute to stress cracking of amorphous plastics such as Altron[™] PC 1000. Sultron[™] PSU. Duratron[®] U1000 PEI. and Sultron[™] PPSU.

Machining Tips

Coolants are strongly suggested during drilling operations, especially with notch sensitive materials such as Ertalyte® PET-P, Duratron® PAI, Duratron® PBI and glass or carbon reinforced products.

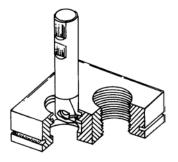
In addition to minimizing localized part heat-up, coolants prolong tool life. Two (flood) coolants suitable for most plastics are Trim E190 and Trim Sol LC SF (Master Chemical Corporation – Perrysburg, OH).

FABRICATION GUIDELINES

Threading & Tapping

Threading should be done by single point using a carbide insert and taking four to five 0.001[°] passes at the end. Coolant usage is suggested.

For tapping, use the specified drill with a two flute tap. Remember to keep the tap clean of chip build-up. Use of a coolant during tapping is also suggested.


Use of a coated tap can improve the toughness of threads in a notch sensitive material.

Milling

Sufficient fixuring allows fast table travel and high spindle speeds when end milling plastics. When face milling, use positive geometry cutter bodies.

Sawing

Band sawing is versatile for straight, continuous curves or irregular cuts. Table saws are convenient for straight cuts and can be used to cut multiple thicknesses and thicker cross sections up to 4" with adequate horsepower. Saw blades should be selected based upon material thickness and surface finish desired.

Sawing Tips

- Rip and combination blades with a 0° tooth rake and 3° to 10° tooth set are best for general sawing in order to reduce frictional heat.
- Hollow ground circular saw blades without set will yield smooth cuts up to 3/4" thickness.
- Tungsten carbide blades wear well and provide optimum surface finishes.

DRILLING

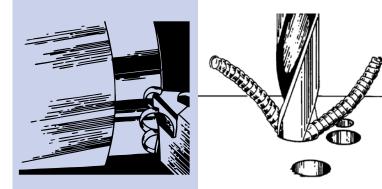
The insulating characteristics of plastics require consideration during drilling operations, especially when hole depths are greater than twice the diameter.

Small diameter holes (1/32" to 1" diameter)

High speed steel twist drills are generally sufficient for small holes. To improve swarf removal, frequent pulling out (peck drilling) is suggested. A slow spiral (low helix) drill will allow for better swarf removal.

Large diameter holes (1" diameter & larger)

A slow spiral (low helix) drill or general purpose drill bit ground to 118° point angle with 9° to 15° lip clearance is recommended. The lip rake should be ground (dubbed off) and the web thinned. It is generally best to drill a pilot hole (maximum 1/2" diameter) using 600 to 1,000 rpm and a positive feed of 0.005" to 0.015" per revolution. Avoid hand feeing because of the drill grabbing which can result in microcracks forming. Secondary drilling at 400 to 500 rpm at 0.008 to 0.020" per revolution is required to expand the hole to larger diameters.


A two step process using both drilling and boring can be use on notch sensitive materials such as Ertalyte® PET-P and glass reinforced materials. This minimizes heat build-up and reduces the risk of cracking.

🚔• Tech Tip:

- 1. Drill a 1" diameter hole using an insert drill at 500 to 800 rpm with a feed rate of 0.005 to 0.015" per revolution.
- Bore the hole to final dimensions using a boring bar with carbide insert with 0.015" to 0.030" radii at 500 to 1,000 rpm and a feed rate of 0.005 to 0.101" per revolution.

Turning

Turning operations require inserts with positive geometries and ground peripheries. Ground peripheries and polished top surfaces generally reduce material build-up on the insert, improving the attainable surface finish. A fine grained C-2 carbide is generally best for turning operations.

Relative Machinability A (1 to 10: 1 = Easiest) A	Acetron [®] GP POM-C	Acetron [®] POM-H, Acetron [®] AF	Acetron [®] AF Blend	Ertalyte® PET-P	Ertalyte® TX PET-P	Nylatron® MC901 PA6 & MC907 PA6	Nylatron® GS PA66 & GSM PA6	Nylatron® GSM Blue PA6 & NSM PA6 703XL	Nylatron® Nylon 101 PA66	Altron [™] PC	Duratron [®] CU60 PBI	Duratron [®] T4203 PAI	Duratron [®] T4301 PAI	Duratron [®] T4501 PAI	Duratron [®] T4503 PAI	Duratron [®] T4540 PAI	Duratron [®] T5530 PAI	Duratron [®] U1000 PEI & U2300 PEI	Fluorosint® MT01	Fluorosint [®] 500 PTFE	Fluorosint® 207 PTFE	Fluorosint [®] HPV	Ketron [®] 1000 PEEK	Ketron [®] GF30 PEEK	Ketron [®] CF30 PEEK	Ketron® HPV PEEK	Sultron [™] PSU	Sultron [™] PPSU	Techtron [®] CM PSBG PPS	Techtron [®] CM PSGF	Techtron® PPS	Techtron [®] HPV PPS
Relative Machinability	-	-	-	2	2	-	-	2	-	2	10	5	5	9	6	6	8	3,7	3	-	-	+	5	7	7	6	3	3	5	7	3	9

MACHINABILITY

Semitron[®] Materials

Follow guidelines for most similar base resin

Base F	Resin	Relative Machinability
225	POM-C	1
300	PET	2
410C	PEI	4
420	PEI	4
420V	PEI	4
480	PEEK	4
490 HR	PEEK	4
500 HR	PTFE	2
520 HR	PAI	4
CMP LL5	PET	2
CMP XL20	PAI	5

DRILLING GUIDELINES

	TIVAR [®] UHMW-PE, Nylatron [®] PA6, Acetron [®] POM based materials	Proteus [®] PP, Altron [™] PC 1000, Sultron [™] PSU, Sultron [™] PPSU and Duratron [®] PEI based materials	Ertalyte [®] PET-P based materials	Symalit [®] PVDF and ECTFE based materials
ninal Hole iameter	1/16" to 1/4" 1/2" to 3/4" 1" to >2"	1/16" to 1/4" 1/2" to 3/4" 1" to >2"	1/16" to 1/4" 1/2" to 3/4" 1" to >2"	1/16" to 1/4" 1/2" to 3/4" 1" to >2"
Feed n./Rev.	0.007 - 0.015 0.015 - 0.025 0.020 - 0.050	0.007 - 0.015 0.015 - 0.025 0.020 - 0.050	0.002 - 0.005 0.015 - 0.025 0.020 - 0.050	0.002 - 0.005 0.015 - 0.025 0.020 - 0.050

Nom Dia

l n

Ketron [®] PEEK based materials	Fluorosint® PTFE ⁽¹⁾ based materials	d Techtron [®] PPS Duratron [®] PAI and Duratron [®] P based materials based materials		Duratron [®] PBI based materials	(1) For Fluorosint [®] MT01 PTFE contact Mitsubishi Chemical Advanced Materials' Technical Service Team
					🚔• Tech Tip:
1/16" to 1/4" 1/2" to 3/4" 1" to >2"	1/16" to 1/4" 1/2" to 3/4" 1" to >2"	1/16" to 1/4" 1/2" to 3/4" 1" to >2"	1/16" to 1/4" 1/2" to 3/4" 1" to >2"	1/2" or larger	Smaller diameter holes High speed twist drills Peck drill suggested
0.002 - 0.005 0.004 - 0.008 0.008 - 0.012	0.007 - 0.015 0.015 - 0.025 0.020 - 0.050	0.007 - 0.015 0.015 - 0.025 0.020 - 0.050	0.007 - 0.015 0.015 - 0.025 0.020 - 0.050	0.015 - 0.025	Larger diameter holes • Drill pilot hole • Use slow speed spiral drills or inserted drills

DRILLING

	Difficul											
	Tapered Hole	Burnt or Melted Surface	Chipping of Surfaces	Chatter	Feed Marks or Spiral Lines on Inside Diameter	Oversize Holes						
Common Cause	 Incorrectly sharpened drill Insufficient clearance Feed too heavy 	 Wrong type drill Incorrectly sharpened drill Feed too light Dull drill Web too thick Not peck drilling 	 Feed too heavy Clearance too great Too much rake (thin web as described) 	 Too much clearance Feed light Drill overhang too great Too much rake (thin web as described) 	 Feed too heavy Drill not centered Drill ground off-center 	 Drill ground off-center Web too thick Insufficient clearance Feed rate too heavy Point angle too great 						

	Difficul	NOTES:		
Undersize Holes	Holes not Concentric	Burr at Cut-off	Rapid Dulling of Drill	
1. Dull drill 2. Too much clearance 3. Point angle too small	 Feed too heavy Spindle speed too slow Drill enters next piece too far Cut-off tool leaves nib, which deflects drill Web too thick Drill speed too heavy at start Drill not mounted on center Drill not sharpened correctly 	 Dull cut-off tool Drill does not pass completely through piece 	 Feed too light of drill Spindle speed too fast Insufficient lubrication from coolant 	

SAWING GUIDELINES

	۱ /	Nylatro Acetroi	HMW-I n® PA6 n® PON nateria	, í 1	Sul	Prote∟ Itron [™] I Sultror tron [™] atron [®] mate	l [™] PSU PPSU a PEI ba	0, and		rtalyte ased m			Symalit® PVDF and ECTFE based materials				
Tooth Form			Butress		Precision		Buti	ress	Precision		Butress		Precision		Butress		
Band Speeds Ft./Min.	<.5"	.5"- 1.0"	1.0"- 3.0"	>3.0"	<.5"	.5"- 1.0"	1.0"- 3.0"	>3.0"	<.5"	.5"- 1.0"	1.0"- 3.0"	>3.0"	<.5"	.5"- 1.0"	1.0"- 3.0"	>3.0"	
Pitch Teeth/In.	3,000	2,500	2,000	1,500	4,000	3,500	3,000	2,500	5,000	4,300	3,500	3,000	4,000	3,500	3,000	2,500	
ooth Form	10-14	6	3	3	10-14	6	3	3	10-14	6	3	3	10-14	6	3	3	

(1) For Fluorosint® MT01 PTFE contact Mitsubishi Chemical Advanced Materials' Technical Service Team

Ketron [®] PEEK based materials					t [®] PTF nateria			echtro ased n			Duratron [®] PAI and Duratron [®] PI based materials				Duratron [®] PBI based materials		
Prec	ision	Buti	ress	Prec	ision	n Butress Precision Butres		ress	ss Precision		Buti	ress	Precision	Butress			
<.5"	.5"- 1.0"	1.0"- 3.0"	>3.0"	<.5"	.5"- 1.0"	1.0"- 3.0"	>3.0"	<.5"	.5"- 1.0"	1.0"- 3.0"	>3.0"	<.5"	.5"- 1.0"	1.0"- 3.0"	>3.0"	.375"-1.0"	1.0"-2.0"
4,000	3,500	3,000	2,500	3,000	2,500	2,000	1,500	5,000	4,300	3,500	3,000	5,000	4,300	3,500	3,000	3,000	1,500
10-14	6-8	3	3	10-14	6-8	3	3	10-14	6-8	3	3	10-14	6-8	3	3	10	10

END MILLING / SLOTTING GUIDELINES

	TIVAR [®] UHMW-PE, Nylatron [®] PA6, Acetron [®] POM based materials	Proteus® PP, Altron [™] PC 1000, Sultron [™] PSU, Sultron [™] PPSU and Duratron [®] PEI based materials	Ertalyte [®] PET-P based materials	Symalit® PVDF and ECTFE based materials
Recommend	1/4", 1/2", 3/4", 1", 2",	1/4", 1/2", 3/4", 1", 2",	1/4", 1/2", 3/4", 1", 2",	1/4", 1/2", 3/4", 1", 2",
Carbide	1/4", 1/2", 3/4"	1/4", 1/2", 3/4"	1/4", 1/2", 3/4"	1/4", 1/2", 3/4"
Depth	0.250	0.250	0.250	0.250
of Cut	0.050	0.050	0.050	0.050
Speed,	270 - 450	270 - 450	270 - 450	270 - 450
Feet/Min.	300 - 500	300 - 500	300 - 500	300 - 500
Feed,	0.002, 0.003, 0.005,	0.002, 0.003, 0.005,	0.002, 0.003, 0.005,	0.002, 0.003, 0.005,
In./Tooth	0.008, 0.001, 0.002, 0.004	0.008, 0.001, 0.002, 0.004	0.008, 0.001, 0.002, 0.004	0.008, 0.001, 0.002, 0.004

Climb milling is recommended over conventional milling (See Figure 1, Page 31).

Ketron [®] PEEK based materials	Fluorosint [®] PTFE ⁽ⁱ⁾ based materials	Techtron [®] PPS based materials	Duratron [®] PAI and Duratron [®] PI based materials	Duratron [®] PBI based materials
1/4", 1/2", 3/4", 1", 2", 1/4", 1/2", 3/4"	1/4", 1/2", 3/4", 1", 2", 1/4", 1/2", 3/4"	1/4", 1/2", 3/4", 1", 2", 1/4", 1/2", 3/4"	1/4", 1/2", 3/4", 1", 2", 1/4", 1/2", 3/4"	1/4", 1/2", 3/4", 1", 2", 1/4", 1/2", 3/4"
0.150 0.060	0.150 0.060	0.150 0.060	0.035	0.015
500-750	500-700 550-750	1300 - 1500 1500 - 2000	500 - 800	250 - 350
0.020, 0.005	0.010, 0.005	0.020, 0.005	0.006 - 0.035	0.002 - 0.006

(1) For Fluorosint® MT01 PTFE contact Mitsubishi Chemical Advanced Materials' Technical Service Team

FACE MILLING (C-2, CARBIDE TOOL)

	TIVAR [®] UHMW-PE, Nylatron [®] PA6, Acetron [®] POM based materials	Proteus [®] PP, Altron [™] PC 1000, Sultron [™] PSU, Sultron [™] PPSU and Duratron [®] PEI based materials	Ertalyte [®] PET-P based materials	Symalit [®] PVDF and ECTFE based materials
Depth	0.150	0.150	0.150	0.150
of Cut	0.060	0.060	0.060	0.060
Speed,	1300 - 1500	1300 - 1500	1300 - 1500	1300 - 1500
Feet/Min.	1500 - 2000	1500 - 2000	1500 - 2000	1500 - 2000
Feed,	0.020	0.020	0.020	0.020
In./Tooth	0.005	0.005	0.005	0.005

Climb milling is recommended over conventional milling (See Figure 1, Page 31).

Ketron [®] PEEK based materials	Fluorosint [®] PTFE ⁽¹⁾ based materials	Techtron [®] PPS based materials	Duratron [®] PAI and Duratron [®] PI based materials	Duratron [®] PBI based materials
0.150 0.060	0.150 0.060	0.150 0.060	0.035	0.015
500 - 750	500 - 700 550 - 750	270 - 450 300 - 500	500 - 800	250 - 350
0.020 0.005	0.010 0.005	0.020 0.005	0.006 - 0.035	0.002 - 0.006

(1) For Fluorosint® MT01 PTFE contact Mitsubishi Chemical Advanced Materials' Technical Service Team

TURNING & BORING

			Difficul		
	Melted Surface	Rough Finish	Burrs at Edge of Cut	Cracking of Chipping of Corners	Chatter
Common Cause	 Tool dull or heel rubbing Insufficient side clearance Feed rate too slow Spindle speed too fast 	 Feed too heavy Incorrect clearance angles Sharp point on tool (slight nose radius required) Tool not mounted on center 	 No chamfer provided at sharp corners Dull tool Insufficient side clearance Lead angle not provided on tool (tool should ease out of cut gradually, not suddenly) 	 Too much positive rake on tool Tool not eased into cut (tool suddenly hits work) Dull tool Tool mounted below center Sharp point on tool (slight nose radius required) 	 Too much nose radius on tool Tool not mounted solidly Material not supported properly Width of cut too wide (use 2 cuts)

CUTTING OFF

			Di	fficul		
	Melted Surface	Rough Finish	Spiral Marks	Concave of Convex Surfaces	Nibs or Burrs at Cut-off Poin	Burrs on Outside Diameter
Common Cause	 Dull tool Insufficient side clearance Insufficient coolant supply 	 Feed too heavy Tool improperly sharpened Cutting edge not honed 	 Tool rubs during its retreat Burr on point of tool 	 Point angle too great Tool not perpendicular to spindle Tool deflecting Feed too heavy Tool mounted above or below center 	 Point angle not great enough Tool dull Feed too heavy 	1. No chamber before cut-off diameter 2. Dull tool

TURNING GUIDELINES (C-2, CARBIDE TOOL)

	TIVAR [®] UHMW-PE, Nylatron [®] PA6, Acetron [®] POM based materials	Proteus® PP, Altron [™] PC 1000, Sultron [™] PSU, Sultron [®] PPSU and Duratron [®] PEI based materials	Ertalyte [®] PET-P based materials	Symalit® PVDF and ECTFE based materials
Depth	0.150" deep cut	0.150" deep cut	0.150" deep cut	0.150" deep cut
of Cut	0.025" deep cut	0.025" deep cut	0.025" deep cut	0.025" deep cut
Speed,	500 - 600	500 - 600	500 - 600	500 - 600
Feet/Min.	600 - 700	600 - 700	600 - 700	600 - 700
Feed,	0.010 - 0.015	0.010 - 0.015	0.010 - 0.015	0.010 - 0.015
In./Tooth	0.004 - 0.007	0.004 - 0.007	0.004 - 0.007	0.004 - 0.007

• Use Recommended Turning Tooling Geometry (See Figure 2, page 32).				
Ketron [®] PEEK based materials	Fluorosint [®] PTFE ⁽¹⁾ based materials	Techtron [®] PPS based materials	Duratron [®] PAI and Duratron [®] PI based materials	Duratron [®] PBI based materials
0.150" deep cut 0.025" deep cut	0.150" deep cut 0.025" deep cut	0.150" deep cut 0.025" deep cut	0.025" deep cut	0.025" deep cut
350 - 500 500 - 600	600 - 1000 600 - 700	100 - 300 250 - 500	300 - 800	150 - 225
0.010 - 0.015 0.003 - 0.008	0.010 - 0.016 0.004 - 0.007	0.010 - 0.020 0.005 - 0.010	0.004 - 0.025 0.015 - 0.25	0.002 - 0.006

(1) For Fluorosint® MT01 PTFE contact Mitsubishi Chemical Advanced Materials' Technical Service Team

ANNEALING

When should parts be annealed after machining to ensure optimum part performance?

Experience has shown us that very few machined plastic parts require annealing after machining to meet dimensional or performance requirements.

All Mitsubishi Chemical Advanced Materials' stock shapes are annealed using a proprietary stress relieving cycle to minimize any internal stresses that may result from the manufacturing process. This assures you that the material will remain dimensionally stable during and after machining.

Machined-in stress can reduce part performance and lead to premature part failure. To prevent machined-in stress, it is important to identify the causes.

Machined-in stress is created by:

- Using dull or improperly designed tooling
- Excessive heat generated from inappropriate speeds and feed rates
- Machining away large volumes of material – usually from one side of the stock shape

To reduce the potential for machined-in stress, review the fabrication guidelines for the specific material. Recognize that guidelines change as the material type changes.

Benefits of Post-Machining Annealing

Improved Chemical Resistance

Polycarbonate, polysulfone, and Duratron[®] PEI, like many amorphous (transparent) plastics may be annealed to minimize stress crazing. Duratron[®] PAI also benefits from post machining annealing. Annealing finished parts becomes more important as machining volume increases. Annealing after machining reduces "machined-in" stresses that can contribute to premature failure.

Better Flatness and Tighter Tolerance Capability

Extremely close-tolerance parts requiring precision flatness and non-symmetrical contour sometimes require intermediate annealing between machining operations. Improved flatness can be attained by rough machining, annealing and finish machining with a very light cut. Balanced machining on both sides of the shape centerline can also help prevent warpage.

Improved Wear Resistance

Extruded or injection molded Duratron® PAI parts that require high PV's or the lowest possible wear factor benefit from an additional cure after machining. This curing process optimizes the wear properties. Only Duratron® PAI benefits from such a cycle.

POST MACHINING AIR ANNEALING GUIDELINES

Material	Heat Up	Hold
Type 6 Nylons	4 hours to 300° F	30 minutes per 1/4" thickness
Type 6/6 Nylons	4 hours to 350° F	30 minutes per 1/4" thickness
Ertalyte [®] Pet-P	4 hours to 350° F	30 minutes per 1/4" thickness
Acetron [®] GP POM-C	4 hours to 310° F	30 minutes per 1/4" thickness
Acetron [®] POM-H	4 hours to 320° F	30 minutes per 1/4" thickness
Altron [™] PC 1000	4 hours to 275° F	30 minutes per 1/4" thickness
Sultron [™] PSU	4 hours to 330° F	30 minutes per 1/4" thickness

Cool Down	Environment	Finish machining of should be perform
50° F per hour	Oil or Nitrogen	Important: Anneal generalized to app machined parts. C
50° F per hour	Oil or Nitrogen	hold time may be are thin. Parts sh
50° F per hour	Oil or Nitrogen	annealing to preve
50° F per hour	Nitrogen or Air	🚔• Tech
50° F per hour	Nitrogen or Air	Ensure parts are shape or flatness
50° F per hour	Air	Do not unfixture completed entire
50° F per hour	Air	the touch. • Do not take shor

of critical dimensions med after annealing.

aling cycles have been ply to a majority of Changes in heat up and possible if cross sections ould be fixtured during ent distortion.

e fixtured to desired SS.

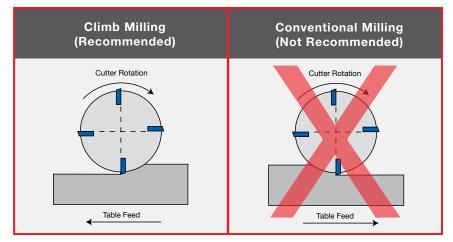
- until parts have e cycle and are cool to
- ort-cuts.

POST MACHINING AIR ANNEALING GUIDELINES

Material	Heat Up	Hold
Sultron [™] PPSU	4 hours to 390° F	30 minutes per 1/4" thickness
Duratron [®] PEI	4 hours to 390° F	30 minutes per 1/4" thickness
Techtron [®] PPS	4 hours to 350° F	30 minutes per 1/4" thickness
Ketron [®] PEEK	4 hours to 300° F 4 hours to 375° F	60 minutes per 1/4" thickness 60 minutes per 1/4" thickness
Duratron [®] PAI	4 hours to 300° F 4 hours to 420° F 4 hours to 470° F 4 hours to 500° F	1 day 1 day 1 day 3 to 10 days
Duratron [®] PI	4 hours to 300° F 4 hours to 450° F 4 hours to 600° F	60 minutes per 1/4" thickness 60 minutes per 1/4" thickness

Heat Up	Hold
50° F per hour	Nitrogen or Air
50° F per hour	Nitrogen or Air
50° F per hour	Air
50° F per hour	Air
50° F per hour	Air
50° F per hour	Air

Finish machining of critical dimensions should be performed after annealing.


Important: Annealing cycles have been generalized to apply to a majority of machined parts. Changes in heat up and hold time may be possible if cross sections are thin. Parts should be fixtured during annealing to prevent distortion.

- Ensure parts are fixtured to desired shape or flatness.
- Do not unfixture until parts have completed entire cycle and are cool to the touch.
- Do not take short-cuts.

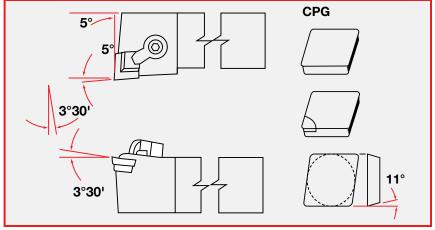

CLIMB MILLING VS. CONVENTIONAL MILLING

Figure 1

RECOMMENDED TURNING TOOLING GEOMETRY

Figure 2

CONVERSIONS

Fractions	Decimal	ww
1/64	.0156	0.396
1/32	.0312	0.793
3/64	.0468	1.190
1/16	.0625	1.587
5/64	.0781	1.984
3/32	.0937	2.381
7/64	.1093	2.778
1/8	.125	3.175
9/64	.1406	3.571
5/32	.1562	3.968
11/64	.1718	4.365
3/16	.1875	4.762
13/64	.2031	5.159
7/32	.2187	5.556
15/64	.2343	5.953
1/4	.250	6.350
17/64	.2656	6.746
9/32	.2812	7.143
19/64	.2968	7.540
5/16	.3125	7.937
21/64	.3281	8.334
11/32	.3437	8.731
23/64	.3593	9.128
3/8	.375	9.525
25/64	.3906	9.921
13/32	.4062	10.318
27/64	.4218	10.715
7/16	.4375	11.112
29/64	.4531	11.509
15/32	.4687	11.906
31/64	.4843	12.303

	1/2 33/64	.500 .5156 .2220	12.700 13.096
.5625 .5781 .5781 .5781 .5781 .5781 .5937 .5037 .5093 .5033 .5093 .6093 .6093 .625 .6093 .626 .603 .626 .6262 .626 .6262 .6381 .6263 .7031 .6703 .6781 .7031 .7034 .7031 .7034 .7031 .7034 .7031 .7034 .7031 .7034 .7031 .7034 .7031 .7034 .7031 .7034 .7031 .7034 .7187 .8125 .8006 .8126 .8006 .875 .9375 .9375 .93375 .93375 .9687 .93375 .96375 .93375 .99335 .9433		.5312 .5468	13.493 13.890
.5781 .5781 .5837 .5837 .50337 .5033 .6093 .6033 .6093 .6033 .6093 .6034 .6093 .6034 .6093 .6034 .6093 .6406 .6406 .6406 .6406 .6406 .6405 .7187 .7187 .7187 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7187 .7183 .7188 .7183 .7194 .71943 .71943 .71843 .719657 .7184 .7		.5625	14.287
		.5781	14.684
.6033 .6033 .625 .62406 .6406 .625 .6406 .6562 .6562 .6562 .6562 .6563 .6563 .6563 .6564 .6563 .6575 .7343 .7343 .7343 .7343 .7343 .750 .7343 .750 .7543 .750 .7564 .750 .7565 .750 .7563 .750 .7563 .7812 .7812 .8437 .8437 .8437 .8593 .8593 .875 .8593 .875 .8593 .875 .9662 .9375 .9687 .93375 .9683 .9683 .9683 .943 .9683 .943		.5937	15.081
		.6093	15.478
.6406 .6406 .6562 .6781 .6781 .6781 .6781 .6781 .7031 .6875 .7031 .7034 .7031 .7034 .7031 .7034 .7031 .7034 .7034 .7034 .7034 .7034 .7034 .7034 .7034 .7034 .7034 .7187 .7187 .7182 .7187 .7183 .71834 .7183 .81255 .7183 .8125 .7963 .8125 .7963 .875 .9062 .9062 .9375 .90375 .93375 .9084 .93375 .90343 .943 .90343 .943		.625	15.875
.6562 .6562 .6781 .6781 .6781 .6875 .6875 .6875 .6875 .6875 .7031 .7031 .7187 .7187 .7187 .7187 .7187 .7187 .750 .750 .750 .750 .750 .751 .750 .7812 .7812 .7812 .7812 .7812 .7812 .7812 .7812 .8125 .8125 .8125 .8593 .875 .875 .875 .875 .875 .9062 .9052 .9375 .9337 .9631 .9631 .9634 .9634 .9634 .9634		.6406	16.271
.6781 .6781 8875 8875 7031 7031 7187 7187 750 7343 750 754 750 7343 750 7343 750 756 750 7656 7656 7656 7656 7656 7658 7656 7658 7812		.6562	16.668
		.6781	17.065
.7031 .7031 .7187 7343 .7343 7343 .7343 7343 .750 756 .751 756 .750 756 .751 756 .756 756 .756 756 .756 756 .756 756 .756 756 .756		.6875	17.462
.7187 7187 7343 743 750 755 756 756 750 756 751 756 756 756 751 756 756 776 761 7812 7812 8125 8231 8437 8437 8437 8593		.7031	17.859
.7343 .7343 .750 .750 .756 .7812 .7812 .7812 .7812 .7812 .7812 .7812 .7812 .7812 .7812 .7812 .7812 .8125 .8281 .8125 .8437 .8437 .8593 .875 .875 .875 .875 .875 .875 .875 .875 .875 .875 .875 .875 .875 .875 .875 .875 .9062 .9375 .9631 .9631 .9631 .9631 .9631 .9633 .9631 .9633 .9633 .9633 .9633 .9633 .9633 .9633 .9633 .9633 .9633 .9633 .9633 .9633 .9633 .9633 .963	01	.7187	18.256
.750 .7566 .7656 .7656 .7656 .8125 .8125 .8281 .8281 .875 .8263 .875 .8693 .875 .8906 .8906 .8906 .8906 .875 .875 .8906 .8906 .9062 .9062 .9062 .9062 .9062 .9062 .9063.	4	.7343	18.653
.7656 .7812 .7812 .8125 .8125 .8125 .8437 .8437 .8263 .8293 .8293 .8296 .8296 .3275 .9218 .9218 .9218 .9243		.750	19.050
.7812 .7968 .8125 .8125 .8125 .8125 .8125 .8437 .8437 .8436 .8906 .8906 .8906 .9062 .9062 .9062 .9062 .9062 .9063 .9063 .9375 .9063 .9375 .9063 .9375 .9063 .9375 .9063 .9375 .9063 .9375 .9063	4	.7656	19.446
.7968 .8125 .8125 .8281 .8281 .8283 .875 .875 .875 .9062 .9062 .9062 .9375 .9375 .9375 .9343	0	.7812	19.843
	4	.7968	20.240
	6	.8125	20.637
	4	.8281	21.034
	~	.8437	21.431
	4	.8593	21.828
		.875	22.225
	4	.8906	22.621
.9218 .9375 .9531 .9687 .9843	0	.9062	23.018
	4	.9218	23.415
	9	.9375	23.812
.9687 .9843	4	.9531	24.209
.9843	01	.9687	24.606
	4	.9843	25.003
		1.000	25.400

ALRO PLASTICS LOCATIONS

Alro Plastics Alroplastics.com

Detroit

1750 E. Heights Dr. Madison Heights, MI 48071 (800) 877-2576

Chicago

279 Madsen Dr. Ste. #102 Bloomingdale, IL 49204 (888) 877-2576

Grand Rapids

4670 60th S.E. Grand Rapids, MI 48512 (616) 656-2820

Jackson

2218 Enterprise St. Jackson, MI 49204 (517) 787-5500

Clearwater

12171 62nd St. Ste. #150 Largo, FL 33773 (727) 573-1480

Louisville

5500 Shepherdsville Rd. Ste. #300 Louisville, KY 40228 (502) 968-9980

Thermoplastics & Thermosets

Plastics are commonly described as being either a thermoplastic (meltable) or a thermoset (non meltable). Thermoset materials such as phenolic and epoxy were developed as early as 1900 and were some of the earliest "high volume" plastics. Both thermoplastic and thermoset stock shapes are available for machined parts, although thermoplastic stock shapes are much more commonly used today. Their ease of fabrication, self-lubricating characteristics, and broad size and shape availability make thermoplastics ideal for bearing and wear parts as well as structural components.

Mitsubishi Chemical Advanced Materials

All statements, technical information and recommendations contained in this publication are presented in good faith and are, as a rule, based upon tests and such tests are believed to be reliable and practical field experience. The reader, however, is cautioned, that Mitsubshi Chemical Advanced Materials does not guarantee the accuracy or completeness of this information and it is the customer's responsibility to determine the suitability of Mitsubishi Chemical Advanced Materials' products in any given application. Acetron, Duratron, Ertalyte, Fluorosint, Ketron, Nylatron, Proteus, Sanalite, Semitron, Symalit, Techtron and TVAR, are registered trademarks of Mitsubishi Chemical Advanced Material's. Design and content created by Mitsubishi Chemical Advanced Materials and are protected by copyright law. Copyright © Mitsubishi Chemical Advanced Materials. All rights reserved. MCM-NA-85 [02.03.21

800-877-2576 ALROPLASTICS.COM

